

P• **H**•**E**•**B**•**U**•**S**

PROBING OF HERMEAN EXOSPHERE BY ULTRAVIOLET SPECTROSCOPY

PHEBUS observations of the He 58.4 nm emission during BepiColombo's first Mercury Flyby

D. Koutroumpa¹, E. Quémerais¹, R. Robidel¹, J.-Y. Chaufray¹, B. Sandel² & the PHEBUS team ¹ LATMOS - CNRS, France; ² LPL, U. of Arizona, USA

> MERCURY 2022 CONFERENCE June 6-10, 2022, Orléans, France

□PHEBUS/EUV detector operations

- □BepiC Mercury SB#1 overview
- Instrument calibration @ He 58.4 nm
 - Solar Fluxes & Excitation Rates
 - Mariner 10 & PHEBUS calibration based on Interplanetary He

Results & Discussion

PHEBUS EUV detector

Calibration @ He 58.4 nm

Based on IP He data & model:

-Model developed to fit the EUVE & SOHO/UVCS IP He data (Lallement et al., 2004). -Compatible with an interstellar nHe = 0.02 cm⁻³, the SOHO/CDS solar fluxes and derived excitation rate at 1 AU.

-Mariner 10/UVS data: 4 roll observations ('73 -'74)

-BepiC/PHEBUS data: 14 pointed observations (2021)

- $g = F(\lambda_0) \sigma_{\lambda}$
- $\sigma_{\lambda} = 8.34 \ 10^{-16} \ cm^2$ Å
- $F(\lambda_0)$ solar flux at the center of the line (cm⁻² s⁻¹ Å⁻¹):
 - from SOHO/CDS total solar flux data from 1997 to 2001 (McMullin et al. 2004)
 - Assuming a line FWHM = 0.136 Å (SOHO/SUMER no cycle dependence observed)
- Used by the ISSI Bern helium team (Lallement et al. 2004)

Total flux for 1973, from extrapolated MgII and F10.7 data scaled to SOHO/CDS

Mariner 10/UVS Excitation Rates

Mariner 10/UVS calibration

Mariner 10/UVS calibration

PHEBUS Excitation Rates

From SOHO/CDS total fluxes

PHEBUS calibration

Calibration Factor (@58.4 nm) = 1.2 cts /s /RayleighEffective Area @ 58.4 nm (HV=3400 V) = 0.012 cm^2

))(() DESP

Nazionale delle Ricerche

He exospheric profile

1000

RBONNI

1

DESP

Consiglio Nazionale delle Ricerche

MERCURY 2022, Orléans

- Mariner 10/UVS found 25 30 R at 500 km (given small uncertainty of calibration)
- □ PHEBUS finds 3 R at 500 km (± 0.5 R)
- □ We find a factor of 8-10 between PHEBUS and Mariner 10/UVS.
- Excitation rates, and calibration based on IP He for the two instruments are consistent
- Variability seems real, to be confirmed with future PHEBUS observations
- □ Analysis and comparison with exospheric models is ongoing