

Visible Channels (404nm & 422nm) in-flight performance and calibration

Rozenn ROBIDEL

2nd year PhD student @LATMOS (France)

PhD supervised by E. Quemerais and D. Koutroumpa

rozenn.robidel@latmos.ipsl.fr

Contents

- 1. Types of observation with the visible channels
- 2. Issues with the dark current
- 3. Calibration of the visible channels
- 4. Results from the first Swing-By

Contents

1. Types of observation with the visible channels

- 2. Issues with the dark current
- 3. Calibration of the visible channels
- 4. Results from the first Swing-By

Operating the visible channels

□During flips

- for calibration (i.e. stars observation)
- for zodiacal light

□During swing-by

- Venus swing-by: No data
- Mercury swing-by: Interesting data

Observation during flips

Since 2019, 87 observations during flips

- c404 and c422 only
- HV = 1000V
- Observation rate = 2s
- Integration time = 1s

Observation during flips

Since 2019, 87 observations during flips

- c404 and c422 only
- HV = 1000V
- Observation rate = 2s
- Integration time = 1s

□2 types of observations during flips:

• 1 scanner position → observe the sky

Observation during flips: method

phe_par_sc_nuva_FLIP_20210401T044500_20210401T064600.fits commanded angle = 125.0°, slitmode = {'Across'}, exposure time = {1.0}s, HV = 1021V

Observation during flips: method

 $phe_par_sc_nuva_FLIP_20220309T050200_20220309T080200.fits \\ commanded \\ angle = 120.0^{\circ}, \\ slitmode = \{'Removed'\}, \\ exposure \\ time = \{1.0\}s, \\ HV = 1020V$

Projection of the FoV on the sky

Observation during flips

Since 2019, 87 observations during flips

- c404 and c422 only
- HV = 1000V
- Observation rate = 2s
- Integration time = 1s

□2 types of observations during flips:

- 1 scanner position → observe the sky
- Mutliple scanner positions → follow a star

Observation during flips: method

Contents

- 1. Types of observation with the visible channels
- 2. Issues with the dark current
- 3. Calibration of the visible channels
- 4. Results from the first Swing-By

Visible channels' dark current

Visible channels' dark current

Dark observations NUV K with slit ACROSS

Visible channels' dark current

Dark observations NUV K with slit REMOVED

Radiation monitor data

BERM data for October 2021. Data are averaged over 90 minutes

BERM data for March 2022.

Data are averaged over 90 minutes

Contents

- 1. Types of observation with the visible channels
- 2. Issues with the dark current
- 3. Calibration of the visible channels
- 4. Results from the first Swing-By

 Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV

- 1. Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- 2. Determine which star was in PHEBUS FoV by reconstructing the geometry of observation

- Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- 2. Determine which star was in PHEBUS FoV by reconstructing the geometry of observation
 - 13 different stars were observed during flips with slit across: alpha eridani, beta aurigae, , theta aurigae, beta canis majoris, alpha carinae, epsilon canis majoris, gamma velorum, beta carinae, alpha leonis, theta carinae, alpha virginis, alpha cygnus and alpha gruis

- Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- Determine which star was in PHEBUS FoV by reconstructing the geometry of observation
- 3. Retrieve the visible spectrum of this star

- 1. Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- Determine which star was in PHEBUS FoV by reconstructing the geometry of observation
- 3. Retrieve the visible spectrum of this star
 - Burnashev, 1985
 - Krisciunas et al., 2017

- 1. Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- Determine which star was in PHEBUS FoV by reconstructing the geometry of observation
- 3. Retrieve the visible spectrum of this star
- 4. Compute its transmitted flux *F* [ph.s⁻¹.cm⁻²] on each detector:

$$\mathbf{F} = \int \boldsymbol{\Phi}(\boldsymbol{\lambda}) \, \mathbf{T}(\boldsymbol{\lambda}) d\boldsymbol{\lambda}$$

Visible channels' transmission

- 1. Detect count rate peaks: if the peak occurs on both detectors at the same time it means a star was in PHEBUS FoV
- Determine which star was in PHEBUS FoV by reconstructing the geometry of observation
- 3. Retrieve the visible spectrum of this star
- 4. Compute its transmitted flux \mathbf{F} [ph.s⁻¹.cm⁻²] on each detector
- 5. Compute the effective area of each detector: $CR = F \times A_{eff}$

Visible channels effective area

c404 effective area = $1,19E-02 \pm 3,25E-04 \text{ cm}2$

Contents

- 1. Types of observation with the visible channels
- 2. Issues with the dark current
- 3. Calibration of the visible channels
- 4. Results from the first Swing-By

Visible channels' results for MSB1

□Transit in the shadow of Mercury

- □c422: Ca detection
- □c404: possible Ca contamination or Mn detection
- **□Bursts**
- **□Observation time not long enough**

c422 data processing

- □ Correct the data for the different contributions
- □Remove the peaks and smooth the curve
- □Convert to radiance (R) using the effective area calibrated in-flight

Exponential fit to the c422 data

□ Exponential fit on the dayside data:

$$f(z) = f_0 e^{-z/h}$$

With f_0 the radiance at the surface, z the altitude above the surface and h the e-folding width

□Two populations:

- f_1 , $h_1 = 6.3kR$, 2 180km
- f_2 , $h_2 = 0.8kR$, 8 310km

Comparison with MESSENGER data during flybys

Adapted from Vervack et al., 2010

Comparison with MESSENGER data in orbital phase

- □a) Intensity at the surface and b) e-folding distance over Mercury dawn determined from exponential fits to radial limb scan data.
- □Based on Burger et al.,2014, for the MSB1 TAA (i.e. 263°):
 - $f_0 \sim 9 \text{ kR}$
 - h ~ 1500 2000 km

Perspectives

- □Use Chamberlain (1963) model: derive the temperature and the density at the exobase
- □Process c404 data: model Ca contamination
- □ldentify the bursts' origin:
 - surface
 - magnetosphere
 - particles

□Plan for second Mercury Swing-By:

- Longer and more distant observation
- FUV detector to observe Magnesium